2015年度 第11期
标题:
基于高斯过程回归方法的研究及应用
作者:
王芳黎
作者单位:
武汉理工大学自动化学院控制科学与工程系,湖北 武汉 430070
关键字:
高斯过程回归,参数优化,协方差函数,超参数,机器学习
摘要:
高斯过程回归方法是近年发展起来的一种机器学习方法,适用于处理高维数、小样本和非线性等复杂回归问题。它的核心是协方差函数,而传统高斯过程回归则是任意选择一个核函数,通过研究不同的基本的协方差函数的组合来比较得到建模性能最好的协方差函数。改进算法的有效性和准确性将通过实验进一步论证。