2023年度  第11期


标题:基于改进YOLOv5算法的果园水果检测
作者:高宽祥 段金英 汪婕
作者单位:西京学院电子信息学院,陕西 西安 710123
关键字:深度学习;目标检测;双主干特征提取网络;特征图拼接;果园水果检测
摘要: 针对YOLOv5主干特征提取网络能力弱,特征融合能力差等问题,提出了一种改进的YOLOv5目标检测算法。提出了一种双主干特征提取网络,将特征提取网络分成主路和辅路两个支路,提升模型的特征提取能力。同时,修改YOLOv5中的C3模块,进一步提升C3模块的特征提取能力。在特征融合方面,提取一种新型的特征图拼接方式,取代了原有的特征图Concat方式,提升了模型的特融合能力。实验结果表明,改进后的YOLOv5算法,在自己收集的水果数据集上的mAP@0.5达到了85.0%,较改进前的YOLOv5(82.8%)提升了2.2%,且检测速度基本保持不变,能够快速准确地进行果园水果检测。同时进行了相关消融实验,进一步验证了所提出每个改进点的有效性。