2022年度  第2期


标题:基于改进粒子群最优化算法的Gmapping研究
作者:孙涛 冯玉田
作者单位:上海大学通信与信息工程学院,上海 200444
关键字:粒子滤波;同时定位与建图;重采样;粒子群优化算法
摘要:传统的Gmapping算法在RPPF-SLAM的基础上改进了提议分布与重采样策略,提升了算法性能。但是Gmapping在频繁地进行粒子迭代过程中会出现粒子退化现象,导致正确的粒子被丢弃或者粒子的多样性下降,直接影响到建图效果。针对上述问题提出了一种融合改进粒子群最优化算法的粒子滤波SLAM算法,采用PSO算法对采样后的粒子群进行更新,并且对不同权重大小的粒子进行粒子分层,依据分层结果优化重采样策略,保证粒子在高似然区域的占比同时也改善了粒子的多样性。在MATLAB上对改进粒子群优化算法进行仿真实验,结合搭载ROS系统的移动机器人实现真实环境的定位与建图。实验结果表明改进后的算法有着更高精度的定位与更精确的建图效果。